Measurement

The Metric System

The metric system was adopted in France in 1795 as a standardized system of measurement. Today, the worldwide scientific community and most countries use a version of the metric system, known as the **SI system**.

In the SI system, there are seven **base units**. All other quantities can be measured using combinations of these.

SI Base Units				
Base Quantity	Base Unit	Symbol		
Length	meter	т		
Mass	kilogram	kg		
Time	second	S		
Temperature	Kelvin	K		
Amount of Substance	mole	mol		
Electric Current	ampere	A		
Luminous Intensity	candela	cd		

A wide variety of other units, called **derived units**, are combinations of the base units.

SI Derived Units					
Quantity	Unit	Symbol	In Base Units	Alternate Units	
Acceleration		m/s^2	m/s^2		
Activity	Bequerel	Bq			
Electric Charge	Coulomb	С	$A \cdot s$		
Electric Field		N / C	$kg \cdot m / C \cdot s^2$		
Electric Resistance	Ohm	Ω	$kg \cdot m^2 / A^2 \cdot s^3$	V / A	
Energy, Work	Joule	J	$kg \cdot m^2 / s^2$	$N \cdot m$	
EMF	Volt	V	$kg \cdot m^2 / A \cdot s^3$		
Force	Newton	Ν	$kg \cdot m / s^2$		
Frequency	Hertz	Hz	s^{-1}		
Magnetic Field	Tesla	Т	$kg / A \cdot s^2$		
Magnetic Flux	Weber	Wb	$\left(kg\cdot m^{2}\right)/\left(s^{2}\cdot A\right)$	$T\cdot m^2$	
Momentum, Impulse		$kg \cdot m / s$	$kg \cdot m / s$	$N \cdot s$	
Potential Difference	Volt	V	$kg \cdot m^2 / A \cdot s^3$	W / A or J / C	
Power	Watt	W	$kg \cdot m^2 / s^3$	J / s	
Velocity		<i>m / s</i>	<i>m / s</i>		

SI Prefixes

First, we make use of scientific notation. The mass of an electron, for example, is more commonly written as $9.11 \times 10^{-31} kg$.

Second, we make use of metric prefixes. A prefix, when added to a unit, represents a power of 10 by which the measurement is multiplied.

Example 1

1 kilometer (note the prefix kilo-) is equivalent to:

$$1 \ km = 1 \times 1000 \ m$$
$$1 \ km = 10^3 \ m$$

The prefix kilo- represents 1000 or 10^3 .

SI Prefixes					
Prefix	Symbol	Power of 10	Example		
nano	п	10^{-9}	nanometer (nm)		
micro	μ	10 ⁻⁶	microgram (μg)		
milli	т	10 ⁻³	milligram (<i>mg</i>)		
centi	С	10 ⁻²	centimeter (cm)		
deci	d	10 ⁻¹	deciliter (<i>dL</i>)		
Base Unit	varies	10^{0}	meter (<i>m</i>)		
kilo	k	10 ³	kilometer (km)		
mega	М	106	megagram (Mg)		
giga	G	109	gigameter (Gm)		

Example 2

250 micrograms is equivalent to:

Unit Conversions

It is often necessary to change from one set of units to another. For example, you may have to convert a given number of seconds into minutes, or a given number of centimeters into meters.

The procedure for converting units involves two steps.

- 1. Write a conversion factor.
- 2. Multiply the given set of units by the conversion factor to get the desired set of units.

Several examples of unit conversion will help illustrate this procedure.

Example 3

Convert 1.1 cm to meters.

Example 4 Convert 2.278×10^{11} *m* to kilometers.

Example 5

Convert 1 m / s to km / h.

Example 6 Convert 108 km/h to m/s.

Homework Measurement Worksheet

Measurement Worksheet

1. Convert each of the following length measurements as directed.

	 a. 1.1 <i>cm</i> to meters. c. 2.1 <i>km</i> to meters. 	b. d.	76.2 <i>nm</i> to millimeters. 2.278×10 ¹¹ <i>m</i> to centimeters.
2.	Convert each of the following n	neasurements to meters.	

a. $42.3 \ cm$ d. $214 \ \mu m$ b. $21 \ km$ e. $570 \ nm$ c. $0.023 \ mm$

3. Convert each of the following mass measurements to its equivalent in kilograms.

a.	147 g	b.	11 Mg
C.	$7.23 \ \mu g$	d.	478 mg

- 4. Rank the following mass measurements from smallest to largest: 11.6 mg, $1021 \mu g$, 0.000006 kg, 0.31 mg.
- 5. Express each of the following measurements in terms of the basic SI unit. (e.g. 1.6 km = 1600 m)

a.	0.56 km	b.	75 cm	c.	3224 mm
d.	655 mm	e.	961 μm	f.	7564 g
g.	252 g	h.	52 µs	i.	15 years

6. Convert each of the following velocities as directed.

 a. 25 m/s to km/h.
 b. 90 km/h to m/s.
 c. 75 km/h to m/s.

 d. 15 m/s to km/h.
 e. 225 km/h to m/s.

Measurement Worksheet Key

1.	(a) 0.011 <i>m</i>	(b) $76.2 \times 10^{-6} mm$	(c) 2 100 <i>m</i>	(d) 2.278×10^{13} cm
2.	(a) 0.423 m (e) 5.7×10^{-7} m	(b) 21 000 <i>m</i>	(c) $2.3 \times 10^{-5} m$	(d) $2.14 \times 10^{-4} m$
3.	(a) 0.147 <i>kg</i>	(b) 11 000 <i>kg</i>	(c) $7.23 \times 10^{-9} kg$	(d) $4.78 \times 10^{-4} kg$
4.	0.31 mg, 1021 μg	, 0.000006 kg, 11.6 mg	g	
5.	(a) 560 m (e) 9.61×10^{-4} m (i) 4.7304×10^{8} s	(b) 0.75 <i>m</i> (f) 7.564 <i>kg</i>	(c) 3.224 <i>m</i> (g) 0.252 <i>kg</i>	(d) 0.655 m (h) 5.2×10^{-5} s
6.	(a) 90 <i>km/h</i> (e) 62.5 <i>m/s</i>	(b) 25 <i>m/s</i>	(c) $20.8\overline{3} m/s$	(d) 54 <i>km/h</i>